Synthesis and characterization of novel intramolecularly base-stabilized BEt_{2} and BEt derivatives: molecular structures of $1-\mathrm{Et}_{2} \mathrm{BOCPh}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 1-\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{EtBOCCy}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{BEt}\left(1-\mathrm{OCPh}_{2} \mathrm{CH}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$

Harbi T. Al-Masri ${ }^{\text {a }}$, Joachim Sieler ${ }^{\text {a, }, ~}$, Peter C. Junk ${ }^{\mathrm{b}, 1}$, Konstantin V. Domasevitch ${ }^{\mathrm{c}, 1}$, Evamarie Hey-Hawkins ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Institut für Anorganische Chemie der Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
${ }^{\mathrm{b}}$ School of Chemistry, Monash University, PO Box 23, Vic. 3800, Australia
${ }^{\text {c }}$ Inorganic Chemistry Department, Kiev University, Volodimirska Str. 64 Kiev, Ukraine

Received 16 September 2004; accepted 29 October 2004
Available online 6 November 2004

Abstract

The reaction of BEt_{3} with the (2-dimethylaminophenyl)alcohols 1-HOX-2- $\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{X}=\mathrm{CPh}_{2}\right.$ (1), CCy_{2} (2), $\mathrm{CPh}_{2} \mathrm{CH}_{2}$ (3) $]$ [1:1 (for 1-3) or $1: 2$ (for 3)] in the presence of ${ }^{t} \mathrm{BuCO}_{2} \mathrm{H}$ as catalyst gave the BEt_{2} or BEt derivatives 1-Et $\mathrm{BOX}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ $\left[\mathrm{X}=\mathrm{CPh}_{2}\right.$ (4), $\mathrm{CCy}_{2}(\mathbf{5}), \mathrm{CPh}_{2} \mathrm{CH}_{2}$ (7)] and $\mathrm{BEt}\left(1-\mathrm{OCPh}_{2} \mathrm{CH}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$ (8). Treatment of 5 with acetic acid gave 1$\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{EtBOCCy} \mathrm{C}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (6). Compounds $\mathbf{4} \mathbf{8}$ were characterized spectroscopically (NMR, IR, MS). Crystal structure determinations were carried out on $\mathbf{4}, \mathbf{6}$ and 8 . For the chiral compound $\mathbf{6}$, both enantiomers are present in the unit cell. © 2004 Elsevier B.V. All rights reserved.

Keywords: Boranes; Ethylboranes; Boronalkoxides; Crystal structure

1. Introduction

Boron reagents with reactive boron-substituent bonds [1-4] are of interest as starting materials for the preparation of transition metal-boron complexes, in medicinal chemistry, catalysis, and hydroboration reactions and as precursors for polymers [5,6]. We recently described the (2-dimethylaminophenyl)alcohols 1-HOX-2-NMe ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad\left[\mathrm{X}=\mathrm{CPh}_{2} \quad\right.$ (1), $\quad \mathrm{X}=\mathrm{CCy}_{2} \quad$ (2), $\left.\mathrm{X}=\mathrm{CPh}_{2} \mathrm{CH}_{2}(3)\right]$ [7], which are suitable for the formation of intramolecularly base-stabilized transition metal

[^0][8] and main group compounds [1,2,9] with six- and sevenmembered chelate rings.

We now report the high-yield synthesis and spectroscopic properties of the novel intramolecularly base-stabilized ethylborane compounds 1-Et ${ }_{2} \mathrm{BOX}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ $\left[\mathrm{X}=\mathrm{CPh}_{2}(4), \mathrm{CCy}_{2}(5), \mathrm{CPh}_{2} \mathrm{CH}_{2}(7)\right], 1-\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{Et}-$ $\mathrm{BOCCy}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (6) and $\mathrm{BEt}\left(1-\mathrm{OCPh}_{2} \mathrm{CH}_{2}-2-\right.$ $\left.\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}(8)$ with six- and seven-membered chelate rings and crystal structures of $\mathbf{4 , 6}$ and 8.

2. Results and discussion

2.1. Synthesis

BEt_{3} reacts with the alcohols 1-HOX-2-NMe ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ [$\mathrm{X}=\mathrm{CPh}_{2}$ (1), CCy_{2} (2), $\mathrm{CPh}_{2} \mathrm{CH}_{2}$ (3)] [7] in refluxing
toluene in the presence of ${ }^{t} \mathrm{BuCO}_{2} \mathrm{H}$ as catalyst [10] to give the boron heterocycles $\mathbf{4}, \mathbf{5}$, and $\mathbf{7}$ or $\mathbf{8}$, as illustrated in Schemes 1 and 2. The BEt_{2} derivative 5 reacts with acetic acid to afford $\mathbf{6}$ (Scheme 1). Compounds $\mathbf{4} \mathbf{8}$ were obtained in $70-80 \%$ yield. The by-product in all reactions is ethane gas, which does not interfere in subsequent reactions.

2.2. Spectroscopic properties

2.2.1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

In the ${ }^{1} \mathrm{H}$ NMR spectra of the compounds $\mathbf{4 - 8}$ the most prominent signal is that due to the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ protons, which give rise to one (for 7 and $\mathbf{8}$) or two singlets (for 4, 5 and 6) at 2.56, 3.03 (4), 2.87, 3.01 (5), 2.75, 2.96 (6), 2.49 (7) and 2.75 ppm (8). One (for 7 and 8) or two (for $\mathbf{4}, 5$ and 6) ${ }^{13} \mathrm{C}$ NMR signals appear for the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ groups at 46.9, 50.0 (4), 50.6, 51.5 (5), 49.5, 51.6 (6), 45.4 (7) and 46.5 ppm (8). In the ${ }^{1} \mathrm{H}$ NMR spectra of 7 and 8 the benzylic methylene protons give rise to a singlet at 3.91 (7) and 3.74 ppm (8). Also, in the ${ }^{13} \mathrm{C}$ NMR spectra, the CH_{2} carbon atoms appear as a singlet at 39.8 (7) and 46.0 ppm (8). The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ and the benzylic group are shifted up- and downfield, respectively, in comparison with the parent organic ligands $\mathbf{1}-\mathbf{3}$ [7]. The $\mathrm{C}-\mathrm{O}$ carbon atoms appear as a singlet at 80.2 (4), 79.0 (5), 81.2 (6), 82.0 (7) and $78.8 \mathrm{ppm}(\mathbf{8})$. The signals corresponding to the cyclohexyl and aromatic carbon atoms show the character-

Scheme 1. Preparation of 4-7.

Scheme 2. Preparation of $\mathbf{8}$.
istic resonances in the expected chemical shift regions, similar to that observed for the organic ligands $\mathbf{1}-\mathbf{3}$ [7].

2.2.2. ${ }^{11}$ B NMR spectra

While 4, 5 and $\mathbf{8}$ exhibit one signal in the ${ }^{11} \mathrm{~B}$ NMR spectrum at $7.6(4), 6.9(5)$, and $33.4 \mathrm{ppm}(\mathbf{8})$, two major signals with different intensities are observed in the ${ }^{11} \mathrm{~B}$ NMR spectra of 6 and 7 at 7.7, 31.3 (ca. 2:1) (6) and $7.9,32.0 \mathrm{ppm}$ (ca. 2:1) (7). This demonstrates the presence of two types of boron compounds, presumably with tricoordinate $\left(\mathrm{sp}^{2}\right)$ and tetracoordinate $\left(\mathrm{sp}^{3}\right)$ environments [11]. The chemical shifts of around 32 ppm are indicative of a tricoordinate $\left(\mathrm{sp}^{2}\right)$ boron atom, although this value is shifted to high field compared with those reported in the literature [12]; on the other hand, the signals at ca. 7 ppm indicate the presence of intramolecular $\mathrm{N}-\mathrm{B}$ coordination [tetracoordinate $\left(\mathrm{sp}^{3}\right)$ boron atom] [4]. This interaction appears to be absent in $\mathbf{8}$, presumably due to steric hindrance. In the tricoordinate borane compound 9-phenyl-9-BBN (9-BBN $=9$-borabicyclo[3.3.1]nonyl), the signal is observed at 80.4 ppm [13]. The corresponding tetracoordinate $\mathrm{BH}_{2}[\delta=-2.5$ to 4.4 ppm$][2]$ and $\mathrm{BX}_{2}[\mathrm{X}=\mathrm{Cl}(\delta=7.9-8.6 \mathrm{ppm})$, $\mathrm{X}=\mathrm{F}(1.3-1.9 \mathrm{ppm})][1]$ derivatives of $\mathbf{1}-\mathbf{3}$ exhibit chemical shifts in the same range as the tetracoordinate species in 4-7.

2.2.3. IR spectra

In the infrared spectra of compounds 4-7 the $\mathrm{B}-\mathrm{N}$ stretching vibration is observed as one of the strongest
bands between 1500 and $1444 \mathrm{~cm}^{-1}$ [14]. For 4-8, a strong band, which appears in the range of 1400-1300 cm^{-1}, is attributed to the symmetric $\mathrm{B}-\mathrm{O}$ stretching frequency [15]. A strong band at $1695 \mathrm{~cm}^{-1}$, characteristic of a carbonyl stretching frequency, is present in the infrared spectrum of $\mathbf{6}$.

2.2.4. Mass spectrometry

The mass spectra gave parent ion peaks at $m / z=370.9$ (4), $383.9(5)$, and 671.8 (8) or a fragment due to elimination of Et [385.0 ($\left.\left.\mathrm{M}^{+}-\mathrm{Et}\right)\right]$ for 6 or $\mathrm{BEt}_{2}\left[317.1\left(\mathrm{M}^{+}-\mathrm{BEt}_{2}\right)\right]$ for 7 , which agree with the corresponding calculated isotopic distribution patterns. There are many fragments, which are either similar or identical for these closely related compounds (see Section 3).

2.3. Molecular structures of 4, $\mathbf{6}$ and $\mathbf{8}$

Colorless crystals of $\mathbf{4}, \mathbf{6}$ and $\mathbf{8}$ were obtained as described in the experimental section. Selected interatomic distances and angles are given in Tables 1 and 2, the molecular structures are depicted in Figs. 1-3.

The common feature of the molecular structures of 4 and 6 is the intramolecular stabilization of the boron compounds by interaction with one amino group. The structural data of the $\mathrm{O}-\mathrm{C}-$ phenylene $-\mathrm{NC}_{2}$ fragments are similar for 4 (Fig. 1, Table 1) and 6 (Fig. 2, Table 1). The coordination of the amino group results in a puckered six-membered $\mathrm{BOC}_{3} \mathrm{~N}$ ring. The mean deviation of the atoms $N(1), O(1), C(3), C(8)$, and $C(9)$ from the mean plane is $0.044 \AA$ for 4 and $0.0266 \AA$ for 6 . The deviation of the $B(1)$ atom from this plane is $0.75 \AA$ for 4 and $0.59 \AA$ for 6 . The puckering parameters according to Pople and Cremer [16] were determined for 4 and 6 and are in agreement with an envelope conformation ($\theta=56.8^{\circ}$ and $46.1^{\circ}, \phi=10.95^{\circ}$ and 2.26°, respectively). This leads to a distorted tetrahedral environment at $\mathrm{B}(1)$ [small O-B-N bite angle [4: 101.9(1); 6: 106.7(2) ${ }^{\circ}$], one large and one small $\mathrm{O}-\mathrm{B}-\mathrm{C}_{\mathrm{Et}}$ bond angle [4: 116.6(1),

Table 1
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 4 and 6

	$\mathbf{4}$	$\mathbf{6}$
Bond lengths		
$\mathrm{B}(1)-\mathrm{O}(1)$	$1.458(2)$	$1.423(3)$
$\mathrm{B}(1)-\mathrm{N}(1)$	$1.726(2)$	$1.663(3)$
$\mathrm{B}(1)-\mathrm{C}_{\mathrm{Et}}$	$1.624(2), 1.632(2)$	$1.604(3)$
Bond angles		
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{B}(1)$	$123.7(1)$	$124.9(2)$
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{N}(1)$	$101.9(1)$	$106.7(2)$
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}_{\mathrm{Et}}$	$116.6(1), 108.3(1)$	$108.3(2)$

Table 2
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{8}$

Bond lengths	
$\mathrm{B}(1)-\mathrm{O}(1)$	$1.357(4)$
$\mathrm{O}(2)-\mathrm{B}(1)$	$1.362(4)$
$\mathrm{B}(1)-\mathrm{C}(45)$	$1.573(5)$
Bond angles	
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{O}(2)$	$117.8(3)$
$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(45)$	$127.5(3)$
$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{C}(45)$	$114.6(3)$

Fig. 1. Molecular structure of 4 (ORTEP, 50% probability, SHELXTL plus; XP [26], hydrogen atoms and toluene omitted for clarity).

Fig. 2. Molecular structure of 6 (ORTEP, 50% probability, SHELXTL PLus; XP [26], hydrogen atoms omitted for clarity; only the R enantiomer is shown).
$\left.108.3(1)^{\circ}\right]$, or small bond angles for $6\left[\mathrm{O}-\mathrm{B}-\mathrm{C}_{\mathrm{Et}}\right.$ 108.3(2), $\mathrm{O}(1)-\mathrm{B}-\mathrm{O}(2) 109.7(2)^{\circ} \mathrm{J}$.

The structural data of the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bond angles in 4 and 6 differ remarkably from those of the strained

Fig. 3. Molecular structure of $\mathbf{8}$ (ORTEP, 50\% probability, shelxtl plus; XP [26], hydrogen atoms omitted for clarity).
five-membered $\mathrm{BC}_{3} \mathrm{~N}$ rings in $\mathrm{B}\left(\mathrm{OCH}_{2} \mathrm{CPh}_{2} \mathrm{O}\right)\{2,6-$ $\left.\left(\mathrm{NMe}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\} \quad$ [17], $\mathrm{BCl}_{2}\left\{2,6-\left(\mathrm{NEt}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}$, $\mathrm{BCl}_{2}\left\{2-\mathrm{N}\left(\mathrm{BCl}_{3}\right) \mathrm{Et}_{2} \mathrm{CH}_{2}-6-\left(\mathrm{NEt}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}\right\}, \quad \mathrm{BCl}_{2}\{2-$ $\left.\left(\mathrm{NMe}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}$ [3] and $\mathrm{BX}_{2}\left\{2-\left(\mathrm{NR}_{2} \mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}$ $\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{BX}_{2}=9\right.$-borabicyclo[3.3.1]nonane; $\mathrm{R}=\mathrm{Me}$, $\left.\mathrm{X}=\mathrm{OCH}_{2} \mathrm{CPh}_{2} \mathrm{O}\right)$ [18]. Thus, the $\mathrm{C}-\mathrm{B}-\mathrm{N}$ bond angles in the latter [94.7(2), 95.2(1) and 95.7(2) ${ }^{\circ}$] are much smaller than the $\mathrm{X}-\mathrm{B}-\mathrm{N}[\mathrm{X}=\mathrm{O}(1), \mathrm{N}(2)]$ bond angles of $\mathbf{4}$ and $\mathbf{6}$, while the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bond angles [109.2(1) and $\left.110.0(1)^{\circ}\right]$ of the $\mathrm{BOC}_{3} \mathrm{~N}$ six-membered rings in $\mathrm{BCl}_{2}\left\{2-\left(\mathrm{NEt}_{2} \mathrm{CH}_{2}\right) \mathrm{OC}_{6} \mathrm{H}_{4}\right\}$ and $\left[\mathrm{BCl}_{2}\left\{2-\mathrm{NHEt}_{2} \mathrm{CH}_{2}-6\right.\right.$ $\left.\left.\left(\mathrm{NEt}_{2} \mathrm{CH}_{2}\right) \mathrm{OC}_{6} \mathrm{H}_{3}\right\}\right] \mathrm{Cl}$ [4] are larger than the $\mathrm{X}-\mathrm{B}-\mathrm{N}$ $[\mathrm{X}=\mathrm{O}(1), \mathrm{N}(2)]$ bond angles of $\mathbf{4}$ and $\mathbf{6}$.

A comparison of the structural data of the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bond angles in $1-\mathrm{Y}_{2} \mathrm{BOX}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad\left[\mathrm{X}=\mathrm{CPh}_{2}\right.$, $\mathrm{Y}=\mathrm{Cl}: \quad 109.9(2)^{\circ} ; \quad \mathrm{X}=\mathrm{CCy}_{2}, \quad \mathrm{Y}=\mathrm{Cl}: \quad 109.2(1)^{\circ} ;$ $\left.\mathrm{X}=\mathrm{CPh}_{2}, \mathrm{Y}=\mathrm{F}: 108.4(1)^{\circ}\right]$ [1] with those of the sixmembered $\mathrm{BOC}_{3} \mathrm{~N}$ rings of the dialkylborane 4 and the monoalkylborane 6 shows that the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bite angles in the dihaloboranes are much larger than those observed for 4 and 6 .

A comparison of the structural data of the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bond angles in $\mathbf{4}$ and $\mathbf{6}$ with those of the six-membered $\mathrm{BXC}_{3} \mathrm{~N} \quad[\mathrm{X}=\mathrm{O}(1), \mathrm{N}(2)]$ rings in $1-\mathrm{H}_{2} \mathrm{BOX}-2-$ $\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad\left[\mathrm{X}=\mathrm{CPh}_{2}: 106.1(1)^{\circ}, \quad \mathrm{CCy}_{2}: \quad 107.6(2)^{\circ}\right]$, $1-\mathrm{H}_{2} \mathrm{BN}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Ph}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad\left[106.2(3)^{\circ}\right]$ and $1-$ $\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{HBOCPh}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad\left[106.8(1)^{\circ}\right] \quad$ [2] shows that the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bond angle in $\mathbf{4}$ is much smaller than the $\mathrm{X}-\mathrm{B}-\mathrm{N}[\mathrm{X}=\mathrm{O}(1), \mathrm{N}(2)]$ bond angles observed for the BH derivatives, while the $\mathrm{O}-\mathrm{B}-\mathrm{N}$ bond angle in 6 is similar to those observed for the borane derivatives. The range of bond angles about $\mathrm{N}(1)$ for $\mathbf{4}$ and $\mathbf{6}$ is smaller than those in the BH derivatives, which range from 107.1(3) to $113.4(2)^{\circ}$.

The $\mathrm{C}-\mathrm{X}-\mathrm{B}[\mathrm{X}=\mathrm{O}(1), \mathrm{N}(2)]$ bond angles in the BH derivatives [113.7(1)-117.6(2) ${ }^{\circ}$] are much smaller than those observed for the dihaloborane deriva-
tives $\quad\left[122.5(1)-124.0(2)^{\circ}\right], \quad 4 \quad\left[123.7(1)^{\circ}\right] \quad$ and $\quad \mathbf{6}$ [124.9(2) ${ }^{\circ}$].

The range of bond angles about $\mathrm{B}(1)$ in $\mathbf{4}$ and $\mathbf{6}$ is larger than those in the BH_{2} derivatives [from 105(1) to $\left.115.5(8)^{\circ}\right]$. The B-O bond in the dihaloborane derivatives $[1.391(2)-1.409(2) \AA]$ is shorter than those in the BH derivatives $[1.432(2)$ to $1.511(4) \AA]$ and the (di)alkylboranes $\mathbf{4}[1.458(2) \AA]$ and $\mathbf{6}[1.423(3) \AA]$, and the $\mathrm{B}-\mathrm{N}$ bond in the dihaloborane derivatives [1.626(2)-1.642(2) $\AA]$ is shorter than that in the ethyl boron derivatives 4 $[1.726(2) \AA]$ and $6[1.663(3) \AA]$.

The above data of the six-membered $\mathrm{BXC}_{3} \mathrm{~N}$ $[\mathrm{X}=\mathrm{O}(1), \mathrm{N}(2)]$ rings in 4 and $\mathbf{6}$ are comparable with those of the $\mathrm{BOC}_{3} \mathrm{~N}$ six-membered rings in $\mathrm{BCl}_{2}\{2-$ $\left.\left(\mathrm{NEt}_{2} \mathrm{CH}_{2}\right) \mathrm{OC}_{6} \mathrm{H}_{4}\right\}$ and $\left[\mathrm{BCl}_{2}\left\{2-\mathrm{NHEt}_{2} \mathrm{CH}_{2}-6-\left(\mathrm{NEt}_{2}\right.\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2}\right) \mathrm{OC}_{6} \mathrm{H}_{3}\right\}\right] \mathrm{Cl}[4]$. The $\mathrm{C}-\mathrm{O}-\mathrm{B}$ bond angles [119.9(1) and $\left.122.8(1)^{\circ}\right]$ are smaller than those for $\mathbf{4}$ and $\mathbf{6}$, the bond angles about $B(1)$ [bond angles range from $108.0(1)$ to $111.6(1)$ and from 106.4(1) to $\left.112.1(1)^{\circ}\right]$ are less distorted than those observed for $\mathbf{4}$ and $\mathbf{6}$, the bond angles about $\mathrm{N}(1)$ [bond angles range from 104.8(1) to $116.0(1)$ and from $104.9(1)$ to $\left.116.2(1)^{\circ}\right]$ are more distorted than those observed for 4 and 6 and the B-O $[1.425(2)$ and $1.420(2) \AA$] and $\mathrm{B}-\mathrm{N}$ bond lengths [1.633(2) and $1.627(2) \AA$] are similar to those observed for 4 and 6.

Other structurally characterized examples of intramolecularly base-stabilized six-membered boroncontaining rings are $\mathrm{B}(\mathrm{cat})\left\{2-\left(\mathrm{NHPhCH}_{2}\right) \mathrm{OC}_{6} \mathrm{H}_{4}\right\}$ (cat $=\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) [19] and $\mathrm{BPh}_{2}\left\{2-(\mathrm{CHO}) \mathrm{OC}_{6} \mathrm{H}_{4}\right\}$ [20]. Here, the NHPh or $\mathrm{C}=\mathrm{O}$ group is coordinated to the boron atom [B-N 1.636(4); B-O 1.496(4) A], which exhibits a distorted tetrahedral environment about $\mathrm{B}(1)$. The bond angles range from $106.0(2)^{\circ}$ to $114.9(3)^{\circ}$ and thus lie in the range found in 4 and 6 , while the $\mathrm{B}-\mathrm{O}$ bond is longer than those observed for 4 and 6 .

The $\mathrm{B}-\mathrm{N}$ bond lengths of $\mathbf{4}$ and $\mathbf{6}$ are comparable to those of related dichloroborane derivatives [4] and those of dialkyl- or dialkoxyborane compounds with $\mathrm{BC}_{3} \mathrm{~N}$ rings [17,18]. Also, the $\mathrm{B}-\mathrm{N}$ bond lengths in $\mathbf{4}$ and 6 are larger than those of the adducts $\mathrm{BCl}_{3}\left(\mathrm{NMe}_{3}\right)[\mathrm{B}-\mathrm{N}$ $1.575(10) \AA$] [21], BCl_{3} (рy) [B-N 1.592(3) A] [22], and $\mathrm{BCl}_{3}(\mathrm{NCMe})[\mathrm{B}-\mathrm{N} 1.562(8) \mathrm{A}]$ [23].

The cyclic six-membered ring compound, $\mathrm{B}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NMe}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{CMe}=\mathrm{CHO}[24]$ has similar $\mathrm{B}-$ $\mathrm{N}[1.64(1) \AA]$ and $\mathrm{B}-\mathrm{O}$ bond lengths $[1.45(1) \AA$ i to 4 and 6.

The bond lengths and angles of the organic fragment of 4 and 6 are similar to those observed for the corresponding organic compounds $\mathbf{1}$ and 2 [7].

The X-ray crystal structure of $\mathbf{8}$ (Fig. 3, Table 2) shows a trigonal-planar three-coordinate boron atom [sum of angles at boron $360.2(3)^{\circ}$]. The boron atom is coordinated by two oxygen atoms $[\mathrm{B}(1)-\mathrm{O}(1) 1.357(1)$ and $\mathrm{B}(1)-\mathrm{O}(2) 1.362(4) \AA$] and by one ethyl group $[\mathrm{B}(1)-\mathrm{C}(45) 1.573(5) \AA]$. The $\mathrm{B}-\mathrm{O}$ bonds in $\mathbf{8}$ are shorter than those observed for the BH derivatives $[1.432(2)$ to $1.511(4) \AA$] [2] and the (di)alkylboranes 4 [1.458(2) \AA. $]$ and $6[1.423(3) \AA]$. The $B-C_{E t}$ bond in $\mathbf{8}[1.573(5) \AA]$ is slightly shorter than those observed for 4 and 6 . The bond lengths and angles of $\mathbf{8}$ are normal and in agreement with those observed for the corresponding organic ligand 3 [7].

3. Experimental

3.1. General remarks

All experiments were carried out under purified dry nitrogen. Solvents were dried and freshly distilled under nitrogen. The NMR spectra were recorded in CDCl_{3} with an AVANCE DRX 400 spectrometer (Bruker). ${ }^{1} \mathrm{H}(400.13 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR spectra (100.63 MHz) with tetramethylsilane as external standard. ${ }^{11} \mathrm{~B}$ NMR spectra (128.38 MHz) with $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$ as external standard. Infrared spectra were recorded with a Perkin-Elmer System 2000 FT-IR spectrometer between 4000 and 400 cm^{-1} using KBr disks. Elemental analyses were determined with a VARIO EL (Heraeus). Melting points (Gallenkamp) are uncorrected. Mass spectra were recorded with a MAT-8230 (EI-MS, 70 eV). The chemicals BEt_{3} and ${ }^{t} \mathrm{BuCO}_{2} \mathrm{H}$ were used as purchased. The (2-dimethylaminophenyl)alcohols 1-HOX-2-NMe $\mathrm{C}_{6} \mathrm{H}_{4}$ $\left[\mathrm{X}=\mathrm{CPh}_{2}\right.$ (1), $\mathrm{X}=\mathrm{CCy}_{2}$ (2), $\mathrm{X}=\mathrm{CPh}_{2} \mathrm{CH}_{2}$ (3) $]$ were prepared according to the literature [7].

3.2. [(2-Dimethylaminophenyl)diphenylmethoxy]diethylborane (4)

$1 \mathrm{~g}(3.2 \mathrm{mmol})$ of $1-\mathrm{HOCPh}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (1) was treated with a solution of $0.32 \mathrm{~g}(3.2 \mathrm{mmol})$ of $\mathrm{BEt}_{3}(1$
$\mathrm{M})$ in toluene in the presence of ${ }^{t} \mathrm{BuCO}_{2} \mathrm{H}(0.1 \mathrm{~g})$ as catalyst. The solution was stirred for 3 h at $-10{ }^{\circ} \mathrm{C}$ and then at $50{ }^{\circ} \mathrm{C}$ for 12 h . The mixture was cooled to r.t. and the solvent was removed under vacuum. The residual oil was dissolved in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution filtered. After evaporation of the solvent and recrystallization of the residue from toluene/hexane (1/3) colorless crystals were obtained at $-20^{\circ} \mathrm{C}$ in 80% yield (0.95 g). M.p. ${ }^{160-162 ~}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (δ / ppm): $0.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 1.1\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 2.56$ (s, $\left.3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.19-7.42(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}$ NMR (δ / ppm): 9.3 (s, $\left.\mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 27.1\left(\mathrm{~s}, \mathrm{BCH} \mathrm{CH}_{3}\right), 46.9\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $50.0\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 80.2(\mathrm{~s}, \mathrm{CO}), 119.0\left(\mathrm{~s}, \mathrm{C} 6\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 126.4 (s, C 4 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 127.7 (s, C3 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 127.9 (s, C 5 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 128.9 ($\mathrm{s}, p-\mathrm{C}$ in $\mathrm{C}_{6} \mathrm{H}_{5}$), 131.0 ($\mathrm{s}, o-\mathrm{C}$ in $\mathrm{C}_{6} \mathrm{H}_{5}$), $137.0\left(\mathrm{~s}, m\right.$ - C in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 145.1\left(\mathrm{~s}, \mathrm{C} 2\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 148.5 (s, C 1 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 150.0 (s, ipso-C in $\mathrm{C}_{6} \mathrm{H}_{5}$). ${ }^{11} \mathrm{~B}$ NMR (δ / ppm): 7.6 (br. s). IR: 3084 w, $3059 \mathrm{w}, 3023$ w, 2978 w-m, $2947 \mathrm{~m}, 2867 \mathrm{w}, 2837 \mathrm{w}, 2791 \mathrm{w}-\mathrm{m}$, $2636 \mathrm{w}, 1954 \mathrm{w}, 1597 \mathrm{w}, 1486$ vs, 1459 vs, 1446 vs, $1398 \mathrm{~m}-\mathrm{s}, 1282 \mathrm{~m}-\mathrm{s}, 1267 \mathrm{~m}, 1205 \mathrm{~m}, 1178 \mathrm{~s}, 1166 \mathrm{~m}$, $1155 \mathrm{~m}, 1134 \mathrm{w}-\mathrm{m}, 1098 \mathrm{~s}, 1051 \mathrm{w}, 1035 \mathrm{~s}, 1022 \mathrm{vs}$, $1001 \mathrm{w}-\mathrm{m}, 940 \mathrm{~m}, 930 \mathrm{~m}-\mathrm{s}, 896 \mathrm{~m}-\mathrm{s}, 771 \mathrm{vs}, 703 \mathrm{vs}$, $637 \mathrm{~s}, 565 \mathrm{~m}-\mathrm{s}, 524 \mathrm{w} \mathrm{cm}^{-1} . \mathrm{MS}: m / z=370.9(5 \%$, M^{+}), $342.1\left(60 \%, \mathrm{M}^{+}-\mathrm{Et}\right), 303.0\left(19 \%, \mathrm{M}^{+}-\mathrm{BEt}_{2}\right)$, $286.0\left(65 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}\right), 249.9\left(13 \%, \mathrm{M}^{+}-\mathrm{Ph}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 193.9\left(18 \%, \mathrm{M}^{+}-\mathrm{Ph}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}-2 \mathrm{Et}\right), 164.9$ ($18 \%, \mathrm{CPh}_{2}^{+}$), $119.9\left(15 \%, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}^{+}\right), 104.9$ (18%, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}^{+}\right), 90.9\left(100 \%, \mathrm{C}_{7} \mathrm{H}_{7}^{+}\right), 76.9\left(35 \%, \mathrm{C}_{6} \mathrm{H}_{5}^{+}\right)$, $55.1\left(15 \%, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$, and fragmentation products thereof. Calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BNO}: \mathrm{M}=371.33$. Found: $\mathrm{C}, 79.50$; H, 6.99; N, 4.39%. Calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BNO}$: C 80.87 ; H, 8.14; N, 3.77\%.

Phenyl ring numbering scheme:

3.3. [(2-Dimethylaminophenyl)dicyclohexylmethoxy]diethylborane (5)

A similar procedure to that described for 4 was used here, except that $1-\mathrm{HOCCy}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (2) $(0.32 \mathrm{~g}$, 1.01 mmol) was used instead of $\mathbf{1}$. Colorless crystals were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane solution $(1 / 3)$ at $20{ }^{\circ} \mathrm{C}$. Yield: $0.27 \mathrm{~g}(70 \%)$. M.p. ${ }^{165-170}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\delta / \mathrm{ppm}): \quad 0.65-2.0\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 7.24-7.42 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR (δ / ppm): 9.7 (s, $\left.\mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 26.5\left(\mathrm{C} 4\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 26.7\left(\mathrm{~s}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right)$, 27.5 ($\mathrm{s}, \mathrm{C} 3 / \mathrm{C} 5$ in $\mathrm{C}_{6} \mathrm{H}_{11}$), 28.0 ($\mathrm{s}, \mathrm{C} 3 / \mathrm{C} 5$ in $\mathrm{C}_{6} \mathrm{H}_{11}$), 29.0 (s, $\mathrm{C} 2 / \mathrm{C} 6$ in $\mathrm{C}_{6} \mathrm{H}_{11}$), 29.7 ($\mathrm{s}, \mathrm{C} 2 / \mathrm{C} 6$ in $\mathrm{C}_{6} \mathrm{H}_{11}$),
48.8 ($\mathrm{s}, \mathrm{C} 1$ in $\mathrm{C}_{6} \mathrm{H}_{11}$), 50.6 ($\left.\mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 51.5$ (s, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.0$ (s, CO), 119.6 (s, C6 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 126.7 ($\mathrm{s}, \mathrm{C} 4$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 127.1 ($\mathrm{s}, \mathrm{C} 3$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 141.7 (s, C 5 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 145.1 ($\mathrm{s}, \mathrm{C} 2$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 153.2 ($\mathrm{s}, \mathrm{C} 1$ in $\mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{11}$ B NMR (δ / ppm): 6.9 ppm (br.). IR: 2931 vs , 2851 vs, 2785 s, 1703 vs, 1574 w, 1482 vs, 1457 vs, $1366 \mathrm{~s}, 1284 \mathrm{~s}, 1185 \mathrm{vs}, 1102 \mathrm{~m}-\mathrm{s}, 1084 \mathrm{~m}, 1071 \mathrm{~m}$, $1044 \mathrm{~s}, 993 \mathrm{~m}, 932 \mathrm{~m}-\mathrm{s}, 894 \mathrm{~m}, 865 \mathrm{~m}, 816 \mathrm{~m}, 762 \mathrm{~s}$, $717 \mathrm{~m}-\mathrm{s}, 674 \mathrm{~m}, 635 \mathrm{w}, 566 \mathrm{~m}, 520 \mathrm{w}, 484 \mathrm{w} \mathrm{cm}^{-1}$. MS: $m / z=383.9\left(75 \% \mathrm{M}^{+}\right), 354.0\left(28 \%, \mathrm{M}^{+}-\mathrm{Et}\right)$, $298.9\left(15 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}\right), 270.0\left(90 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}-\right.$ $\left.2 \mathrm{CH}_{3}\right), 256.0\left(28 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 243.9$ $\left(30 \% \mathrm{M}^{+}-2 \mathrm{Et}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 213.9\left(35 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 199.9\left(10 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}-\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}_{3}\right)$, $173.9\left(12 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 83.0$ $\left(48 \%, \mathrm{C}_{6} \mathrm{H}_{11}\right), 55.0\left(98 \%, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$, and fragmentation products thereof. Calc. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{BNO}: \mathrm{M}=383.42$. Found: C, 74.1; H, 9.32; N, 3.58\%. Calc. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{BNO} \cdot 0.25 \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 74.95 ; \mathrm{H}, 10.59 ; \mathrm{N}$, 3.46%.

3.4. [(2-Dimethylaminophenyl)dicyclohexylmethoxy](acetoxy)ethylborane (6)

Acetic acid $(0.09 \mathrm{~g}, 1.57 \mathrm{mmol})$ in 10 ml of THF was added dropwise at room temperature to a solution of $\mathbf{5}$ $(0.60 \mathrm{~g}, 1.57 \mathrm{mmol})$ in 40 ml of dry tetrahydrofuran over 20 minutes, and the mixture was refluxed for 2 hours. When the solvent and other volatile material were removed in vacuum a white compound remained, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane (1:3). At -10 ${ }^{\circ} \mathrm{C} 0.45 \mathrm{~g}$ of a colorless crystalline compound was obtained (70% yield). M.p. ${ }^{160-165}{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (δ / ppm): 0.78-2.16 $\left(\mathrm{m}, 27 \mathrm{H}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)$, $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.96(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 7.07-7.34 \quad\left(\mathrm{~m}, 4 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C} \quad$ NMR (δ / ppm): 9.9 (s, $\mathrm{BCH}_{2} \mathrm{CH}_{3}$), 17.4 (s, $\mathrm{BCH}_{2} \mathrm{CH}_{3}$), 25.1 (s, C 4 in $\mathrm{C}_{6} \mathrm{H}_{11}$), 27.4 (s, $\mathrm{C} 3 / \mathrm{C} 5$ in $\mathrm{C}_{6} \mathrm{H}_{11}$), 28.6 (s, C2/ C6 in $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 47.3\left(\mathrm{~s}, \mathrm{C} 1\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 49.5\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $51.6\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $53.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 81.2(\mathrm{~s}, \mathrm{CO}), 120.8(\mathrm{~s}$, C 6 in $\mathrm{C}_{6} \mathrm{H}_{4}$), $123.7\left(\mathrm{~s}, \mathrm{C} 4\right.$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 128.4 (s, C 3 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 142.2 (s, C 5 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 146.2 (s, C 2 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 154.0 (s, C 1 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 172.5 (s, CO_{2}). ${ }^{11} \mathrm{~B}$ NMR (δ / ppm): 7.7, 31.3 (br. s, ca. 2:1). IR: $3373 \mathrm{~m}, 3063 \mathrm{~m}$, 2946 vs, 2848 vs, $2786 \mathrm{~m}, 2662 \mathrm{~m}, 2588 \mathrm{~m}, 1950 \mathrm{~m}$, $1752 \mathrm{~s}, 1695$ vs, $1656 \mathrm{~s}, 1581 \mathrm{~m}, 1487$ vs, 1447 vs, 1415 vs, 1401 vs, 1365 vs, 1287 vs, 1259 vs, $1219 \mathrm{~m}-\mathrm{s}$, 1205 $\mathrm{m}, 1185 \mathrm{~s}, 1174$ vs, 1143 vs, 1019 vs, $976 \mathrm{~m}, 963 \mathrm{~m}$, 935 vs, $894 \mathrm{~s}, 868 \mathrm{~m}-\mathrm{s}, 856 \mathrm{~s}, 802 \mathrm{vs}, 771 \mathrm{vs}, 741 \mathrm{vs}$, 718 vs, $674 \mathrm{~s}, 659 \mathrm{~m}, 607 \mathrm{~m}, 566$ vs, $551 \mathrm{~m}, 517 \mathrm{~m}-\mathrm{s}$, $484 \mathrm{~m}, 458 \mathrm{~m} \mathrm{~cm}^{-1}$. MS: $m / z=385.0\left(2 \% \mathrm{M}^{+}-\mathrm{Et}\right)$, $371.0\left(1 \%, \quad \mathrm{M}^{+}-\mathrm{Et}-\mathrm{CH}_{3}\right), 355.0\left(1 \%, \quad \mathrm{M}^{+}-\right.BEt\left.2 \mathrm{CH}_{3}\right), \quad 330.8 \quad\left(5 \%, \quad \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}\right), \quad 297.8 \quad(10 \%$, $\left.\mathrm{M}^{+}-\mathrm{OBEtOCOCH}_{3}\right), 270.7\left(5 \%, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{OCO}-\right.$ $\left.\mathrm{CH}_{3}\right), 256.7\left(28 \%, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{OCOCH}_{3}-\mathrm{CH}_{3}\right)$, $232.7 \quad\left(100 \%, \quad M^{+}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right), \quad 214.6 \quad(15 \%$,
$\left.\mathrm{M}^{+}-\mathrm{OBEtOCOCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 185.0\left(10 \%, \mathrm{M}^{+}-\mathrm{OB}-\right.$ $\mathrm{EtOCOCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{11}-2 \mathrm{CH}_{3}$), $83.0\left(15 \%, \mathrm{C}_{6} \mathrm{H}_{11}\right), 54.7$ $\left(30 \%, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$, and fragmentation products thereof. Calc. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BNO}_{3}$: $\mathrm{M}=413.39$. Found: C 75.9; $\mathrm{H} 9.13 ; \mathrm{N}$ 4.03%. Calc. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BNO}_{3}: \mathrm{C} 72.63$; $\mathrm{H} 9.75 ; \mathrm{N}$ 3.39%.

3.5. [2-(2-Dimethylaminophenyl)-1,1-diphenylethoxy]diethylborane (7)

A similar procedure to that described for $\mathbf{4}$ was used here, except that 1-HOCPh $\mathrm{CH}_{2}-2-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(4)(0.32$ $\mathrm{g}, 1.01 \mathrm{mmol})$ was used instead of $\mathbf{1}$. Yield: $0.27 \mathrm{~g}(70 \%)$. M.p. dec. $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (δ / ppm): 0.86 (br. s, 6 H , $\left.\mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 2.49(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.65$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.02-7.32\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}$ NMR (δ / ppm): 8.1 (s, $\left.\mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 26.4(\mathrm{~s}$, $\left.\mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 39.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 45.4\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 82.0(\mathrm{~s}$, CO), 118.8 ($\mathrm{s}, \mathrm{C} 6$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 122.5 ($\mathrm{s}, \mathrm{C} 4$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 126.3 (s, C 3 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 127.3 ($\mathrm{s}, \mathrm{C} 5$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 127.7 (s , p - C in $\mathrm{C}_{6} \mathrm{H}_{5}$), $130.2\left(\mathrm{~s}, m-\mathrm{C}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 130.9(\mathrm{~s}, o-\mathrm{C}$ in $\mathrm{C}_{6} \mathrm{H}_{5}$), $132.5\left(\mathrm{~s}, \mathrm{C} 2\right.$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), 147.4 (s, C 1 in $\mathrm{C}_{6} \mathrm{H}_{4}$), 154.2 (s, ipso-C in $\mathrm{C}_{6} \mathrm{H}_{5}$). ${ }^{11} \mathrm{~B}$ NMR (δ / ppm): 7.9, 32.0 (br. s). IR: $3084 \mathrm{~m}, 3059 \mathrm{~m}, 3023 \mathrm{~m}, 2978 \mathrm{~m}-\mathrm{s}, 2947 \mathrm{~s}$, $2867 \mathrm{~m}-\mathrm{s}, 2837 \mathrm{~m}-\mathrm{s}, 2791 \mathrm{~m}-\mathrm{s}, 1597 \mathrm{w}, 1582 \mathrm{w}, 1486$ vs, 1459 vs, 1446 vs, $1393 \mathrm{~m}-\mathrm{s}, 1313 \mathrm{~m}, 1282 \mathrm{~m}-\mathrm{s}, 1266$ $\mathrm{m}, 1205 \mathrm{~m}, 1178 \mathrm{~m}-\mathrm{s}, 1166 \mathrm{~m}, 1154 \mathrm{~m}, 1098 \mathrm{~s}, 1051 \mathrm{~m}$, $1035 \mathrm{vs}, 1021 \mathrm{vs}, 1001 \mathrm{~m}, 987 \mathrm{w}, 940 \mathrm{~m}, 930 \mathrm{~m}-\mathrm{s}, 907$ $\mathrm{m}, 896 \mathrm{~m}-\mathrm{s}, 771 \mathrm{vs}, 703 \mathrm{vs}, 637 \mathrm{~s}, 587 \mathrm{w}, 565 \mathrm{~m}-\mathrm{s}, 524$ $\mathrm{w}, 442 \mathrm{w} \mathrm{cm}^{-1}$. MS: $m / z=317.1\left(1 \%, \mathrm{M}^{+}-\mathrm{BEt}_{2}\right)$, $299.0\left(1 \%, \mathrm{M}^{+}-\mathrm{OBEt}_{2}\right), 240.0\left(2 \%, \mathrm{M}^{+}-\mathrm{Ph}-\mathrm{OBEt}_{2}\right)$, $134.9\left(100 \%, \mathrm{M}^{+}-2 \mathrm{Ph}-\mathrm{CH}_{3}-\mathrm{OBEt}_{2}\right), 90.9(20 \%$, $\left.\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right), 76.9\left(25 \%, \mathrm{C}_{6} \mathrm{H}_{5}^{+}\right)$, and fragmentation products thereof. Calc. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BNO}: \mathrm{M}=385.36$. Found: C, $78.20 ; \mathrm{H}, 7.16$; N, 3.95%. Calc. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BNO} \cdot 0.25$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 77.55 ; \mathrm{H}, 8.06 ; \mathrm{N}, 3.45 \%$.
3.6. Bis[2-(2-Dimethylaminophenyl)-1,1-diphenylethoxy]ethylborane (8)

A similar procedure to that described for 7 was used here, except that 2 equiv. of $1-\mathrm{HOCPh}_{2} \mathrm{CH}_{2}-2$ $\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (4) $(0.64 \mathrm{~g}, 2.02 \mathrm{mmol})$ was used instead of 1 equiv. Colorless crystals were obtained from toluene at $-20^{\circ} \mathrm{C}$, Yield: $0.48 \mathrm{~g}(70 \%)$. M.p. $150-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (δ / ppm): 0.84-0.98 (br. m, 5H, $\mathrm{BCH}_{2} \mathrm{CH}_{3}$), 2.75 ($\left.\mathrm{s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.74\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.5(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.1-7.3\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.4-7.5\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR (δ / ppm): $2.10\left(\mathrm{~s}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right.$), $28.0\left(\mathrm{~s}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right), 46.0$ (s, $\left.\mathrm{CH}_{2}\right), 46.5\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)\right), 78.8(\mathrm{~s}, \mathrm{CO}), 121.1(\mathrm{~s}, \mathrm{C} 6$ in $\mathrm{C}_{6} \mathrm{H}_{4}$), $126.1\left(\mathrm{~s}, \mathrm{C} 4\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 127.3$ (s, C3 in $\mathrm{C}_{6} \mathrm{H}_{4}$), $127.5\left(\mathrm{~s}, \mathrm{C} 5\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.7$ (s, C 2 in $\mathrm{C}_{6} \mathrm{H}_{4}$), $128.8\left(\mathrm{~s}, \mathrm{C} 1\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 134.1\left(\mathrm{~s}, p-\mathrm{C}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 134.5(\mathrm{~s}$, $o-\mathrm{C}$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 149.0\left(\mathrm{~s}, m-\mathrm{C}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 152.0(\mathrm{~s}$, ipso-C

Table 3
Crystal data and structure refinement for $\mathbf{4 , 6}$ and $\mathbf{8}$

	4	6	8
Formula	$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BNO} \cdot 0.5$ toluene	$\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BNO}_{3}$	$\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{BN}_{2} \mathrm{O}_{2}$
$M_{\text {r }}$	416.87	413.39	672.68
Temperature (K)	219(2)	223(2)	223(2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$
Unit cell dimensions			
$a($ Å)	10.6416(8)	9.225(1)	9.077(1)
b (\AA)	11.4800(9)	11.137(2)	13.712(2)
$c(\AA)$	11.5716(9)	12.303(2)	16.361(2)
$\alpha\left({ }^{\circ}\right)$	105.945(1)	98.775(3)	73.348(3)
$\beta\left({ }^{\circ}\right.$	116.561(1)	107.943(2)	85.774(3)
$\gamma\left({ }^{\circ}\right)$	95.350(2)	96.740(3)	76.548(3)
$V\left(\AA^{3}\right)$	1176.8(2)	1170.2(3)	1897.3(5)
Z	2	2	2
$\rho_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.176	1.173	1.177
$F(000)$	449	452	720
Absorption coefficient (mm^{-1})	0.069	0.075	0.071
No. of reflections collected	6853	5389	12722
No. of independent reflections	4554	3355	8766
$R_{\text {int }}$	0.0147	0.0191	0.0605
No. of parameters	298	275	465
$R_{1}(I>2 \sigma(I))$	0.0504	0.0489	0.0638
w R_{2} (all data)	0.1549	0.1448	0.1655
$(\Delta / \rho)_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)^{\text {a }}$	0.245	0.611	0.329
$(\Delta / \rho)_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.261	-0.21	-0.256

in $\mathrm{C}_{6} \mathrm{H}_{5}$). ${ }^{11} \mathrm{~B}$ NMR (δ / ppm): 33.4 (br.). IR: 3084 m , $3059 \mathrm{~m}, 3022 \mathrm{~m}, 2987 \mathrm{~m}, 2962 \mathrm{~m}, 2946 \mathrm{~m}, 2932 \mathrm{~m}$, $2862 \mathrm{~m}-\mathrm{s}, 2831 \mathrm{~s}, 2801 \mathrm{~m}, 2784 \mathrm{~m}-\mathrm{s}, 2664 \mathrm{w}, 1731 \mathrm{~m}$, $1703 \mathrm{~m}-\mathrm{s}, 1667 \mathrm{~m}, 1645 \mathrm{w}, 1598 \mathrm{~m}, 1580 \mathrm{w}, 1492 \mathrm{vs}$, $1475 \mathrm{~s}, 1460 \mathrm{~m}-\mathrm{s}, 1447 \mathrm{~s}, 1305 \mathrm{~m}-\mathrm{s}, 1292 \mathrm{~m}-\mathrm{s}, 1281 \mathrm{~m}-$ $\mathrm{s}, 1261 \mathrm{~s}, 1231 \mathrm{~s}, 1197 \mathrm{~m}, 1180 \mathrm{~m}-\mathrm{s}, 1166 \mathrm{~m}, 1159 \mathrm{~m}$, $1149 \mathrm{w}-\mathrm{m}, 1104 \mathrm{~s}, 1058 \mathrm{~s}, 1048 \mathrm{~m}, 1038 \mathrm{~m}-\mathrm{s}, 1032 \mathrm{~m}-\mathrm{s}$, $1006 \mathrm{~m}-\mathrm{s}, 955 \mathrm{~m}-\mathrm{s}, 937 \mathrm{~s}, 872 \mathrm{~m}, 862 \mathrm{~m}-\mathrm{s}, 818 \mathrm{~m}-\mathrm{s}$, $803 \mathrm{~m}-\mathrm{s}, 786 \mathrm{~s}, 767 \mathrm{vs}, 757 \mathrm{vs}, 721 \mathrm{~m}, 701 \mathrm{vs}, 647 \mathrm{~m}$, $608 \mathrm{~s}, 566 \mathrm{~m}, 546 \mathrm{~m}, 534 \mathrm{~m}, 507 \mathrm{~m}, 467 \mathrm{~m}, 434 \mathrm{~m} \mathrm{~cm}^{-1}$. MS: $m / z=671.8\left(2 \%, \mathrm{M}^{+}\right), 429.8\left(2 \%, \mathrm{M}^{+}-2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $-2 \mathrm{Ph}), 356.3\left(78 \%, \mathrm{M}^{+}-2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2 \mathrm{Ph}-\mathrm{EtBO}_{2}\right), 300.3$ $\left(95 \%, \mathrm{CPh}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}^{+}\right), \quad 134.1 \quad\left(100 \%, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right.$ $\left.\mathrm{NMe}_{2}^{+}\right), 91.0\left(28 \%, \mathrm{C}_{7} \mathrm{H}_{7}^{+}\right), 77.0\left(20 \%, \mathrm{C}_{6} \mathrm{H}_{5}^{+}\right), 55.1$ $\left(10 \%, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$, and fragmentation products thereof. Calc. for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{BN}_{2} \mathrm{O}_{2}$: $\mathrm{M}=672.68$. Found: $\mathrm{C}, 73.4 ; \mathrm{H}, 5.99$; $\mathrm{N}, 3.53 \%$. Calc. for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{BN}_{2} \mathrm{O}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 74.51 ; H 6.79; N 3.70\%.

4. Data collection and structure determination

Crystallographic data are listed in Table 3. Data $[\lambda($ Mo K $\alpha)=0.71073 \AA]$ were collected with a Siemens CCD (SMART) diffractometer. All observed reflections were used for determination of the unit cell parameters. Empirical absorption correction with sadabs [25]. The structures were solved by direct methods (shelxtl plus [26]). H atoms were refined in a viding mode.

CCDC Nos. 237059 (4), 237060 (6) and 237061 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 11223-336-033; or deposit@ccdc.cam.uk).

Acknowledgement

P.C. Junk thanks the DAAD for a guest professorship (A/00/18168-226/WS) at the University of Leipzig.

References

[1] H.T. Al-Masri, J. Sieler, S. Blaurock, P. Lönnecke, P.C. Junk, E. Hey-Hawkins, Z. Anorg. Allg. Chem. in press.
[2] H.T. Al-Masri, J. Sieler, P. Lönnecke, P.C. Junk, E. HeyHawkins, Inorg. Chem. in press.
[3] (a) R. Schlengermann, J. Sieler, S. Jelonek, E. Hey-Hawkins, Chem. Commun. (1997) 197;
(b) R. Schlengermann, J. Sieler, E. Hey-Hawkins, Main Group Chem. 2 (1997) 141.
[4] R. Papp, J. Sieler, E. Hey-Hawkins, Polyhedron 20 (2001) 1053.
[5] (a) H. Braunschweig, C. Kollmann, U. Englert, Angew. Chem. 110 (1998) 3355;
Angew. Chem., Int. Ed. 37 (1998) 3179;
(b) Review: H. Braunschweig, Angew. Chem. 110 (1998) 1882;

Angew. Chem., Int. Ed. 37 (1998) 1786;
(c) Review: G.J. Irvine, M.J.G. Lesley, T.B. Marder, N.C. Norman, C.R. Rice, E.G. Robins, W.R. Roper, G.R. Whittell, L.J. Wright, Chem. Rev. 98 (1998) 2685;
(d) H. Braunschweig, C. Kollmann, K.W. Klinkhammer, Eur. J. Inorg. Chem. (1999) 1523.
[6] I. Krossing, H. Nöth, W. Ponikwar, J. Knizek, Eur. J. Inorg. Chem. (1998) 505.
[7] H.T. Al-Masri, J. Sieler, P. Lönnecke, S. Blaurock, K. Domasevitch, E. Hey-Hawkins, Tetrahedron 60 (2004) 333.
[8] H.T. Al-Masri, J. Sieler, E. Hey-Hawkins, Z. Anorg. Allg. Chem., in preparation.
[9] H.T. Al-Masri, J. Sieler, E. Hey-Hawkins, Appl. Organomet. Chem. 17 (2003) 63.
[10] R. Köster, H. Bellut, W. Fenzl, Liebigs Ann. Chem. (1974) 45.
[11] R. Köster, A. Sporzynski, W. Schussler, D. Blaser, R. Boese, Chem. Ber. 127 (1994) 1191.
[12] H.C. Brown, J.A. Soderquist, J. Org. Chem. 27 (1962) 4389.
[13] E. Kalbarczyk, S.J. Pasynkiewicz, J. Organomet. Chem. 292 (1985) 119.
[14] G.E. Coates, J.G. Livingstone, J. Am. Chem. Soc. 93 (1961) 2909.
[15] W.M. Cummings, C.H. Cox, H.R. Snyder, J. Org. Chem. 34 (1969) 1673.
[16] D. Cremer, J.A. Pople, J. Am. Chem. Soc. 97 (1975) 1354.
[17] S. Toyota, T. Futawaka, M. Asakura, H. Ikeda, M. Ōki, Organometallics 17 (1998) 4155.
[18] S. Toyota, M. Ōki, Bull. Chem. Soc. Jpn. 65 (1992) 1832.
[19] R.T. Baker, J.C. Calabrese, S.A. Westcott, J. Organomet. Chem. 498 (1995) 109.
[20] S. Rettig, J.J. Trotter, Can. J. Chem. 54 (1976) 1168.
[21] H. Hess, Acta Cryst. 25B (1969) 2338.
[22] K. Töpel, K. Hensen, M. Trömel, Acta Cryst. 37B (1981) 969.
[23] B. Swanson, D.F. Shriver, J.A. Ibers, Inorg. Chem. 8 (1969) 2182.
[24] A. Ansorge, D.J. Brauer, H. Bürger, F. Dörrenbach, T. Hagen, G. Pawelke, W. Weuter, J. Organomet. Chem. 396 (1990) 253.
[25] G.M. Sheldrick, Sadabs - A Program for Empirical Absorption Correction, Göttingen, 1998.
[26] shelxtl Plus, Siemens Analyt. X-ray Inst. Inc., 1990, XS: Program for Crystal Structure Solution, XL: Program for Crystal Structure Determination, XP: Interactive Molecular Graphics.

[^0]: * Corresponding author. Tel.: +49 0341 9736151; fax: +49 0341 9739319.

 E-mail address: hey@rz.uni-leipzig.de (E. Hey-Hawkins).
 ${ }^{1}$ Crystal structure determination.

